Abstract

This article introduces an innovative approach to the investigation of the conductive–radiative heat transfer mechanism in expanded polystyrene (EPS) thermal insulation at negligible convection. Closed-cell EPS foam (bulk density 14–17 kg·m−3) in the form of panels (of thickness 0.02–0.18 m) was tested with 1–15 µm graphite microparticles (GMP) at two different industrial concentrations (up to 4.3% of the EPS mass). A heat flow meter (HFM) was found to be precise enough to observe all thermal effects under study: the dependence of the total thermal conductivity on thickness, density, and GMP content, as well as the thermal resistance relative gain. An alternative explanation of the total thermal conductivity “thickness effect” is proposed. The conductive–radiative components of the total thermal conductivity were separated, by comparing measured (with and without Al-foil) and simulated (i.e., calculated based on data reported in the literature) results. This helps to elucidate why a small addition of GMP (below 4.3%) forces such an evident drop in total thermal conductivity, down to 0.03 W·m−1·K−1. As proposed, a physical cause is related to the change in mechanism of the heat transfer by conduction and radiation. The main accomplishment is discovering that the change forced by GMP in the polymer matrix thermal conduction may dominate the radiation change. Hence, the matrix conduction component change is considered to be the major cause of the observed drop in total thermal conductivity of EPS insulation. At the microscopic level of the molecules or chains (e.g., in polymers), significant differences observed in the intensity of Raman spectra and in the glass transition temperature increase on differential scanning calorimetry(DSC) thermograms, when comparing EPS foam with and without GMP, complementarily support the above statement. An additional practical achievement is finding the maximum thickness at which one may reduce the “grey” EPS insulating layer, with respect to “dotted” EPS at a required level of thermal resistance. In the case of the thickest (0.30 m) panels for a passive building, above 18% of thickness reduction is found to be possible.

Highlights

  • Large-scale application of expanded polystyrene (EPS) foams with closed cells as thermal insulation in construction engineering requires the sustainable improvement of the thermophysical features of traditional building materials [1,2,3,4,5]

  • A traditional solution for high quality thermal protection in buildings is by using high-thickness insulating layers made of conventional thermal insulation that, together with other more advanced options, comprises “the best building practice”

  • values aretransfer reported in Table thickness effect function

Read more

Summary

Introduction

Large-scale application of EPS foams with closed cells as thermal insulation in construction engineering requires the sustainable improvement of the thermophysical features of traditional building materials [1,2,3,4,5]. It may allow engineers to develop novel materials and encourage industry stakeholders by more effectively optimizing the production costs of these materials, along with better thermal insulation performance. Installing conventional thermal insulation of high thickness in external walls remains an attractive option, especially in harsh climate countries, due to the low market prices of materials and the costs of their installation [9,10,11,12]. One of the first steps to consider is reaching the required level of thermal protection, in terms of thermal transmittance

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.