Abstract

The observations show that the covariability between the western North Pacific (WNP) and the South China Sea (SCS) summer rainfall has experienced an obvious weakening since the early 2000s. During the period 1982–2003, the combined north Indian Ocean (NIO), central North Pacific (CNP), and central equatorial Pacific (CEP) sea surface temperature (SST) forcing results in a high coherence between the WNP and SCS summer rainfall variations via a zonally elongated anomalous lower-level cyclone over the western Pacific. During the period 2004–16, the Indian Ocean SST contribution is largely weakened, and the WNP rainfall variability is dominated by the enhanced Pacific SST forcing with an eastward retreated lower-level wind and rainfall anomalies, whereas the SCS rainfall variability is mainly associated with local air–sea interaction processes. The results obtained from observational analysis are supported by numerical experiments with atmospheric and coupled general circulation models. The change in the coherence of interannual summer rainfall variability over the WNP and SCS has important implications for regional climate prediction in South and East Asia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call