Abstract

The allosteric mechanism plays a key role in cellular functions of several PDZ domain proteins (PDZs) and is directly linked to pharmaceutical applications; however, it is a challenge to elaborate the nature and extent of these allosteric interactions. One solution to this problem is to explore the dynamics of PDZs, which may provide insights about how intramolecular communication occurs within a single domain. Here, we develop an advancement of perturbation response scanning (PRS) that couples elastic network models with linear response theory (LRT) to predict key residues in allosteric transitions of the two most studied PDZs (PSD-95 PDZ3 domain and hPTP1E PDZ2 domain). With PRS, we first identify the residues that give the highest mean square fluctuation response upon perturbing the binding sites. Strikingly, we observe that the residues with the highest mean square fluctuation response agree with experimentally determined residues involved in allosteric transitions. Second, we construct the allosteric pathways by linking the residues giving the same directional response upon perturbation of the binding sites. The predicted intramolecular communication pathways reveal that PSD-95 and hPTP1E have different pathways through the dynamic coupling of different residue pairs. Moreover, our analysis provides a molecular understanding of experimentally observed hidden allostery of PSD-95. We show that removing the distal third alpha helix from the binding site alters the allosteric pathway and decreases the binding affinity. Overall, these results indicate that (i) dynamics plays a key role in allosteric regulations of PDZs, (ii) the local changes in the residue interactions can lead to significant changes in the dynamics of allosteric regulations, and (iii) this might be the mechanism that each PDZ uses to tailor their binding specificities regulation.

Highlights

  • Allosteric regulation orchestrates functional behaviors in biological networks through appropriate switches

  • PDZs play a key role in mediating key cellular functions in the cell, and they are linked to currently challenging diseases including Alzheimer’s, Parkinson’s and cancer

  • We investigate the allosteric response of the two most studied PDZs, PSD-95 and hPTP1E, using the perturbation response scanning (PRS) approach

Read more

Summary

Introduction

Allosteric regulation orchestrates functional behaviors in biological networks through appropriate switches. Models of conformational transition between co-existing states such as the MWC model of Monod [2], and the ‘induced fit’ KNF model of Koshland [3] were the first views among them They described allostery as a binding event that causes conformational change via a single propagation pathway [4]. The population shift models claim that a protein in the unliganded form exhibits an ensemble of conformational states and ligand binding leads to a redistribution of the population of these states. In this view, it is important to explore how protein dynamics might contribute to allostery and make communication possible within a protein

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call