Abstract

This article presents a novel technique for the detection of change in massive evolving communication networks. This approach utilizes a novel hybrid sampling methodology to select central nodes and key subgraphs from networks over time. The objective is to select and utilize a much smaller targeted sample of the network, represented as a graph, without loss of any knowledge derived from graph properties as compared to the entire massive graph. This article uses the targeted samples to detect micro- and macro-level changes in the network. This approach can be potentially useful in the domain of cybersecurity where this article highlights the importance of graph sampling and multi-level change detection in identifying network changes that may be difficult to detect on a larger scale. This article therefore presents a means to audit large networks to establish continuous awareness of network behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.