Abstract

A network provides powerful means of representing complex relationships between entities by abstracting entities as vertices, and relationships as edges connecting vertices in a graph. Beyond the presence or absence of relationships, a network may contain additional information that can be attributed to the entities and their relationships. Attaching these additional attribute data to the corresponding vertices and edges yields an attributed graph. Moreover, in the majority of real‐world applications, such as online social networks, financial networks and transactional networks, relationships between entities evolve over time. Change detection in dynamic attributed networks is an important problem in many areas, such as fraud detection, cyber intrusion detection, and health care monitoring. It is a challenging problem because it involves a time sequence of attributed graphs, each of which is usually very large and can contain many attributes attached to the vertices and edges, resulting in a complex, high‐dimensional mathematical object. In this survey we provide an overview of some of the existing change detection methods that utilize attribute information. We categorize these methods based on the levels of structure in the graph that are exploited to detect changes. These levels are vertices, edges, subgraphs, communities, and the overall graph. We focus attention on the strengths and weaknesses of these methods, including their performance and scalability. Furthermore, we discuss some publicly available dynamic network datasets and give a brief overview of models to generate dynamic attributed networks. Finally, we discuss the limitations of existing approaches identifying key areas for future research.This article is categorized under: Fundamental Concepts of Data and Knowledge > Data Concepts Algorithmic Development > Spatial and Temporal Data Mining Technologies > Machine Learning Application Areas > Business and Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.