Abstract
In this study, mean monthly and diurnal variations in fine particulate matters (PM2.5), nitrate, sulfate, and gaseous precursors were investigated during the Level 3 COVID-19 alert from May 19 to July 27 in 2021. For comparison, the historical data during the identical period in 2019 and 2020 were also provided to determine the effect of the Level 3 COVID-19 alert on aerosols and gaseous pollutants concentrations in Taichung City. A machine learning model using the artificial neural network technique coupled with a kinetic model was applied to predict NOx, O3, nitrate (NO3−), and sulfate (SO42−) to investigate potential emission sources and chemical reaction mechanism. D during the Level 3 COVID-19 alert, a decrease in NOx concentration due to a decrease in traffic flow under the NOx-saturated regime was observed to enhance the secondary NO3− and O3 formation. The present models were shown to predict 80.1, 77.0, 72.6, and 67.2% concentrations of NOx, O3, NO3−, and SO42−, respectively, which could help decision-makers for pollutant emissions reduction policies development and air pollution control strategies. It is recommended that more long-term datasets, including water soluble inorganic salts (WIS), precursors including OH radicals, NH3, HNO3, and H2SO4, be provided by regulatory air quality monitoring stations to further improve the prediction model accuracy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.