Abstract
Simple SummaryThere are about 13,800 species of ants living around the world, but only some of them have been extensively studied in the context of their non−antagonistic relationships with fungi. The best−known example is the symbiosis between leaf−cutting ants and fungi serving them as food. Others include the relationship between ants living in carton nests in the trees’ canopy with fungi increasing the durability of the nest. Do ants utilize fungi in the northern hemisphere and cooler climatic zone? This question is still open. Our goal was to study the less−obvious interactions between ants and common fungi in temperate climates. In our study, we characterized the mycobiota of the surroundings of Formica polyctena ants. We identified nearly 600 strains and investigated their taxonomic affinity. The most abundant fungi in F. polyctena nests are strains belonging to Penicillium—a genus well−known as an antibiotic producer. Other common and widespread fungi related to Penicillium, such as the toxin−producing Aspergillus species, were isolated very rarely. Additionally, the high diversity and high frequency of Penicillium colonies isolated from ants in this study suggest that certain representatives of this genus may be adapted to survive in ant nests, or that they are preferentially sustained by the insects.Studies on carton nesting ants and domatia−dwelling ants have shown that ant–fungi interactions may be much more common and widespread than previously thought. Until now, studies focused predominantly on parasitic and mutualistic fungi–ant interactions occurring mostly in the tropics, neglecting less−obvious interactions involving the fungi common in ants’ surroundings in temperate climates. In our study, we characterized the mycobiota of the surroundings of Formica polyctena ants by identifying nearly 600 fungal colonies that were isolated externally from the bodies of F. polyctena workers. The ants were collected from mounds found in northern and central Poland. Isolated fungi were assigned to 20 genera via molecular identification (ITS rDNA barcoding). Among these, Penicillium strains were the most frequent, belonging to eight different taxonomic sections. Other common and widespread members of Eurotiales, such as Aspergillus spp., were isolated very rarely. In our study, we managed to characterize the genera of fungi commonly present on F. polyctena workers. Our results suggest that Penicillium, Trichoderma, Mucor, Schwanniomyces and Entomortierella are commonly present in F. polyctena surroundings. Additionally, the high diversity and high frequency of Penicillium colonies isolated from ants in this study suggest that representatives of this genus may be adapted to survive in ant nests environment better than the other fungal groups, or that they are preferentially sustained by the insects in nests.
Highlights
Nonpathogenic interactions between ants and fungi have been studied for many years, most of the previous studies focused on Attine ant–fungal mutualism [1,2,3,4,5]
Contemporary research has revealed some newly described examples of ant–fungal mutualism between “black yeasts” (Chaetothyriales) and arboreal ants that live in domatia on myrmecophytic plants or ants which produce cardboard−like construction material [6,7,8,9,10]
Infrabuccal pockets of Camponotus ants proved to be commonly occupied by Schwanniomyces polymorphus yeasts [21]; infrabuccal pellets were the substratum from which new species of Penicillium and Mortierella s.l. were isolated [20,22]
Summary
The fungal pathogens of ants have been studied extensively [3,12,13,14,15,16,17,18], a non−antagonistic side of ant–fungal interactions remains understudied [3]. Studies searching for such relationships have focused mostly on fungi that inhabit ants’ infrabuccal pockets [19], especially those of Camponotus ants [20,21]. For many other ant species, including those that play key roles in the forest ecosystems in temperate climates, the composition of nest−dwelling fungi communities remains unknown
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.