Abstract

Performance of a HRES (hybrid renewable energy system) is highly affected by changes in renewable resources and therefore interruptions of electricity supply may happen in such systems. In this paper, a method to determine the optimal size of HRES components is proposed, considering uncertainties in renewable resources. The method is based on CCP (chance-constrained programming) to handle the uncertainties in power produced by renewable resources. The design variables are wind turbine rotor swept area, PV (photovoltaic) panel area and number of batteries. The common approach in solving problems with CCP is based on assuming the uncertainties to follow Gaussian distribution. The analysis presented in this paper shows that this assumption may result in a conservative solution rather than an optimum. The analysis is based on comparing the results of the common approach with those obtained by using the proposed method. The performance of the proposed method in design of HRES is validated by using the Monte Carlo simulation approach. To obtain accurate results in Monte Carlo simulation, the wind speed and solar irradiance variations are modelled with known distributions as well as using time series analysis; and the best fit models are selected as the random generators in Monte Carlo simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.