Abstract

Pareto-Koopmans efficiency in Data Envelopment Analysis (DEA) is extended to stochastic inputs and outputs via probabilistic input-output vector comparisons in a given empirical production (possibility) set. In contrast to other approaches which have used Chance Constrained Programming formulations in DEA, the emphasis here is on “joint chance constraints.” An assumption of arbitrary but known probability distributions leads to the P-Model of chance constrained programming. A necessary condition for a DMU to be stochastically efficient and a sufficient condition for a DMU to be non-stochastically efficient are provided. Deterministic equivalents using the zero order decision rules of chance constrained programming and multivariate normal distributions take the form of an extended version of the additive model of DEA. Contacts are also maintained with all of the other presently available deterministic DEA models in the form of easily identified extensions which can be used to formalize the treatment of efficiency when stochastic elements are present.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.