Abstract

We present fuzzy goal programming approach to solve chance constrained linear plus linear fractional bi-level programming problem. The chance constraints with right hand parameters as random variables of prescribed probability distribution functions are transformed into equivalent deterministic system constraints. We construct nonlinear membership functions based on deterministic system constraints. The nonlinear membership functions are transformed into linear membership functions by using first order Taylor’s series approximation. In the bi-level decision making context, decision deadlock may arise due to the dissatisfaction of the lower level decision maker with the decision of upper level decision maker. To overcome this problem, decision maker of each level gives his preference bounds on decision variables under his/her control to provide some relaxation on their decisions. Fuzzy goal programming model is used to achieve highest membership goals by minimizing negative deviational variables. Euclidean distance function is used in order to find out the most satisfactory solution. We solve a chance constrained linear plus linear fractional bi-level programming problem to illustrate the proposed approach. General Terms Bi-level programming, linear plus linear fractional programming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.