Abstract

Classical automated test assembly (ATA) methods assume fixed and known coefficients for the constraints and the objective function. This hypothesis is not true for the estimates of item response theory parameters, which are crucial elements in test assembly classical models. To account for uncertainty in ATA, we propose a chance-constrained version of the maximin ATA model, which allows maximizing the α-quantile of the sampling distribution of the test information function obtained by applying the bootstrap on the item parameter estimation. A heuristic inspired by the simulated annealing optimization technique is implemented to solve the ATA model. The validity of the proposed approach is empirically demonstrated by a simulation study. The applicability is proven by using the real responses to the Trends in International Mathematics and Science Study (TIMSS) 2015 science test.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call