Abstract

Due to spontaneous organization of cellulose nanocrystals (CNCs) into the chiral nematic structure that can selectively reflect circularly polarized light within a visible-light region, fabricating stretching deformation-responsive CNC materials is of great interest but is still a big challenge, despite such a function widely observed from existing creatures, like a chameleon, because of the inherent brittleness. Here, a flexible network structure is introduced in CNCs, exerting a bridge effect for the rigid nanomaterials. The as-prepared films display high flexibility with a fracture strain of up to 39%. Notably, stretching-induced structural color changes visible to the naked eye are realized, for the first time, for CNC materials. In addition, the soft materials show humidity- and compression-responsive properties in terms of changing apparent structural colors. Colored marks left by ink-free writing can be shown or hidden by controlling the environmental humidities. This biobased photonic film, acting as a new "smart skin", is potentially used with multifunctions of chromogenic sensing, encryption, and anti-counterfeit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.