Abstract
Resting energy expenditure (REE) is a major component of energy balance. While REE is usually indexed to total body weight (BW), this may introduce biases when assessing REE in obesity or during weight loss intervention. The main objective of the study was to quantify the bias introduced by ratiometric scaling of REE using BW both at baseline and following weight loss intervention. Participants in the DIETFITS Study (Diet Intervention Examining The Factors Interacting with Treatment Success) who completed indirect calorimetry and dual-energy X-ray absorptiometry (DXA) were included in the study. Data were available in 438 participants at baseline, 340at 6 months and 323at 12 months. We used multiplicative allometric modeling based on lean body mass (LBM) and fat mass (FM) to derive body size independent scaling of REE. Longitudinal changes in indexed REE were then assessed following weight loss intervention. A multiplicative model including LBM, FM, age, Black race and the double product (DP) of systolic blood pressure and heart rate explained 79% of variance in REE. REE indexed to [LBM0.66×FM0.066] was body size and sex independent (p=0.91 and p=0.73, respectively) in contrast to BW based indexing which showed a significant inverse relationship to BW (r=-0.47 for female and r=-0.44 for male, both p<0.001). When indexed to BW, significant baseline differences in REE were observed between male and female (p<0.001) and between individuals who are overweight and obese (p<0.001) while no significant differences were observed when indexed to REE/[LBM0.66×FM0.066], p>0.05). Percentage predicted REE adjusted for LBM, FM and DP remained stable following weight loss intervention (p=0.614). Allometric scaling of REE based on LBM and FM removes body composition-associated biases and should be considered in obesity and weight-based intervention studies.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.