Abstract

Nature has selected and fine-tuned the physical and chemical properties of natural objects, such as size, shape, mechanical properties and surface chemistry, at the molecular level in order to modulate biological functions. A new particle fabrication process, particle replication in nonwetting templates (PRINT), has recently begun to attempt to emulate nature's ability to control those physical and chemical traits. The PRINT technology, which combines modern soft lithography with the unique properties of perfluoropolyether molds, enables the production of nanoparticles with unprecedented control of size, shape, chemical composition, deformability and surface functionality. This scalable 'top-down' fabrication process allows for the generation of well-defined nanostructures without the need for molecular assembly. The ability to flexibly engineer various matrix materials offers unique opportunities for the development of nanomedicines with desired functionality. The strength and versatility of PRINT makes it a powerful platform in nanomedicine for elucidating the role of physical and chemical properties of nanodelivery vehicles on the behavior and fate at the cellular, tissue and whole organism level. Utilizing the PRINT technology, we are generating well-defined nanomedicines with tailored properties for preclinical studies against a variety of human diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call