Abstract

SummarySepsis is defined as a dysregulated host-response to infection, across all ages and pathogens. What defines a dysregulated state remains intensively researched but incompletely understood. Here, we dissect the meaning of this definition and its importance for the diagnosis and management of sepsis. We deliberate on pathophysiological features and dogmas that range from cytokine storms and immune paralysis to dormancy and altered homeostasis setpoints. Mathematical reasoning, used to test for plausibility, reveals three interlinked cardinal rules governing host-response trajectories in sepsis. Rule one highlights that the amplitude of the immune response while important is not sufficient and is strictly dependent on rule two, specifying bioenergetic capacity and are together dynamically driven by rule three, delineating stability and alterations in setpoints. We consider these rules and associated pathophysiological parameters for guiding data-science and artificial intelligence mining of multi-omics and big-data for improving the precision of diagnostic and therapeutic approaches to sepsis.FundingPG funded by the European Regional Development Fund and Welsh Government (Ser Cymru programme – Project Sepsis).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.