Abstract

The breakdown voltages of the currently available 1.2 and 1.7-kV classes Silicon Carbide (SiC) transistors are not sufficient to operate under medium blocking voltages. On the other hand, the fabrication yields of the available high-voltage SiC transistors are still low, resulting in low current capabilities. Series-connection of several individual transistors is the solution to meet medium blocking voltages and high current ratings. This paper identifies the most crucial design challenges of gate and base drive circuits suitable for driving fast-switching series-connected SiC transistors. These challenges are presented and analyzed using Finite Element Method simulations and experimental investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.