Abstract

The efficacy of central nervous system (CNS) drugs may be limited by their poor ability to cross the bloodbrain barrier (BBB). Transporters, such as p-glycoprotein, may affect the distribution of many drugs into the CNS in conjunction with the restricted paracellular pathway of the BBB. It is therefore important to gain information on unbound drug concentrations in the brain in drug development to ensure sufficient drug exposure from plasma at the target site in the CNS. In vitro methods are routinely used in drug development to study passive permeability and p-glycoprotein efflux of new drugs. This review discusses the challenges in the use of in vitro data as input parameters in physiologically based pharmacokinetic (PBPK) models of CNS drug disposition of p-glycoprotein substrates. Experience with quinidine demonstrates the variability in in vitro parameters of passive permeability and active pglycoprotein efflux. Further work is needed to generate parameter values that are independent of the model and assay. This is a prerequisite for reliable predictions of drug concentrations in the brain in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call