Abstract
Descriptive geometry has indispensable applications in many engineering activities. A summary of these is provided in the first chapter of this paper, preceded by a brief introduction into the methods of representation and mathematical recognition related to our research area, such as projection perpendicular to a single plane, projection images created by perpendicular projection onto two mutually perpendicular image planes, but placed on one plane, including the research of curves and movements, visual representation and perception relying on a mathematical approach, and studies on toothed driving pairs and tool geometry in order to place the development presented here among them. As a result of the continuous variability of the technological environment according to various optimization aspects, the engineering activities must also be continuously adapted to the changes, for which an appropriate approach and formulation are required from the practitioners of descriptive geometry, and can even lead to improvement in the field of descriptive geometry. The imaging procedures are always based on the methods and theorems of descriptive geometry. Our aim was to examine the spatial variation in the wear of the tool edge and the machining of the components of toothed drive pairs using two cameras. Resolving contradictions in spatial geometry reconstruction research is a constant challenge, to which a possible answer in many cases is the searching for the right projection direction, and positioning cameras appropriately. A special method of enumerating the possible infinite viewpoints for the reconstruction of tool surface edge curves is presented in the second part of this paper. In the case of the monitoring the shape geometry, taking into account the interchangeability of the projection directions, i.e., the property of symmetry, all images made from two perpendicular directions were taken into account. The procedure for determining the correct directions in a mathematically exact way is also presented through examples. A new criterion was formulated for the tested tooth edge of the hob to take into account the shading of the tooth next to it. The analysis and some of the results of the Monge mapping, suitable for the solution of a mechanical engineering task to be solved in a specific technical environment, namely defining the conditions for camera placements that ensure reconstructibility are also presented. Taking physical shadowing into account, conclusions can be drawn about the degree of distortion of the machined surface from the spatial deformation of the edge curve of the tool reconstructed with correctly positioned cameras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.