Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD), or non-alcoholic fatty liver disease (NAFLD), is acommon disease that is diagnosed through manual evaluation of liver biopsies, an assessment that is subject to high interobserver variability (IBV). IBV can be reduced using automated methods. Many existing computer-based methods do not accurately reflect what pathologists evaluate in practice. The goal is to demonstrate how these differences impact the prediction of hepatic steatosis. Additionally, IBV complicates algorithm validation. Fortytissue sections were analyzed to detect steatosis, nuclei, and fibrosis. Data generated from automated image processing were used to predict steatosis grades. To investigate IBV, 18liver biopsies were evaluated by multiple observers. Area-based approaches yielded more strongly correlated results than nucleus-based methods (⌀ Spearman rho [ρ] = 0.92 vs. 0.79). The inclusion of information regarding tissue composition reduced the average absolute error for both area- and nucleus-based predictions by 0.5% and 2.2%, respectively. Our final area-based algorithm, incorporating tissue structure information, achieved ahigh accuracy (80%) and strong correlation (⌀ Spearman ρ = 0.94) with manual evaluation. The automatic and deterministic evaluation of steatosis can be improved by integrating information about tissue composition and can serve to reduce the influence of IBV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.