Abstract

Loss-in-weight feeders are an integral part of most continuous manufacturing processes, ensuring a constant mass flow. The feeders cause a significant degree of back-mixing in such lines. Understanding back-mixing is essential for the treatment of disturbances. However, feeders refilled semi-continuously contradict the common theory assuming steady-state. This study aims at understanding dynamic back-mixing and related phenomena. Low filling levels of a feeder are investigated using a fluorescent tracer. These investigations prove an impact of the addition of material probably caused by a non-uniform draw-in of the screws and dead material in the hopper. In turn, the dead material accounts for up to 50 % of the material in the hopper. Possible evidence of dead zones at higher filling levels and in feeders from literature are discussed additionally. Steady-state models from literature are extended to represent the observations and back-mixing at all filling levels. This extension reduces the root-mean-squared deviation of the model from the experimental data by 41%. The model predicts different responses to similar disturbances depending on the filling. This state-dependent back-mixing and the observed dead zones are challenging for diverting non-conforming material and material traceability. Therefore, these phenomena should be considered in selecting and operating feeders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.