Abstract

At multi-kilometer grid scales, numerical weather prediction models represent surface-based convective eddies as a completely sub-grid one-dimensional vertical mixing and transport process. At tens of meters grid scales, large-eddy simulation models, explicitly resolve all the primary three-dimensional eddies associated with boundary-layer transport from the surface and entrainment at the top. Between these scales, at hundreds of meters grid size, is a so-called grey zone in which the primary transport is neither entirely sub-grid nor resolved, where explicit large-eddy models and sub-grid boundary-layer parameterization models fail in different ways that are outlined in this review article. This article also reviews various approaches that have been taken to span this gap in the proper representation of eddy transports in the sub-kilometer grid range using scale-aware approaches. Introduction of moisture with condensation in the eddies expands this problem to that of handling shallow convection, but similarities between dry and cloud-topped convective boundary layers can lead to some unified views of the processes that need to be represented in convective boundary-layers which will be briefly addressed here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call