Abstract

AbstractThe effect of vacuum ultraviolet (VUV) radiation during ionized physical vapor deposition (IPVD) of tantalum barriers on various porous organosilicate glass low‐k SiCOH films is studied using advanced diagnostics and quantum chemical calculations. VUV photons break the Si–C bonds, releasing hydrocarbon radicals from the pore surfaces. These radicals, trapped in pores that are partially sealed by tantalum deposition, can either react with tantalum to form carbide‐like compounds, TaCx, or be redeposited in the pores as CHx polymers. This is evidenced by a decrease in CH3 groups that correlates with an increase in TaCx. The formation of TaCx poses a significant challenge in the back end of line (BEOL) technology when reducing the barrier thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call