Abstract

Climate change is creating warmer, earlier springs, which are causing the phenology of many organisms to shift. Additionally, as temperatures increase, the body size of many ectotherms is decreasing. However, phenological and body size shifts are not occurring at the same rates across species, even in species that live in close proximity or have similar life history. Differing rates of phenological and body-size shifts may affect ecological interactions. We investigated whether shifts in phenology and body size had a predictable effect on interspecific competition. We tested three hypotheses. First, priority effects would indicate early arriving organisms gain a competitive advantage. Second, larger organisms would be competitively superior. Third, similarly sized organisms would compete more strongly. We manipulated aquatic larval conditions to create variation in wood frog (Rana sylvatica) size at and date of metamorphosis. Wood frogs were placed in terrestrial enclosures with unmanipulated juvenile American toads (Anaxyrus americanus) where we tracked amphibian growth over 3months. Consistent with the size superiority hypothesis, initially smaller wood frogs did not compete as strongly with toads. However, the results of the phenological shift were the opposite of our priority effects prediction: early arrival by frogs increased toad mass. Our results could indicate that toads would experience fewer negative effects of competition with wood frogs that metamorphose earlier and smaller under climate change. Our study highlights the challenges of predicting how climate change will affect interspecific interactions and emphasizes the need to investigate the role of shifts in both phenology and body size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call