Abstract
Conventional power plant condensers operate at unsustainably high cooling water consumption rates (2–28 m3 MW h−1). Dry air-cooled condensers (ACCs) can enable reduced water consumption in power plants. However, ACCs are rarely employed because of the substantial decreases in condenser performance and power plant efficiencies compared to wet-cooled systems. ACC studies typically focus on air-side transport, assuming that the effects of steam-side pressure drop and thermal resistance are small. The objective of the present investigation is to scrutinize this assumption – quantifying the influence of steam-side effects on ACC operation. A detailed model of a representative ACC is formulated. Model results demonstrate that condensation heat transfer and pressure drop are poorly characterized at ACC operating conditions. Predicted power plant efficiency varies by 0.7% with different condensation heat transfer models. Additionally, predicted plant efficiencies vary depending on which pressure drop correlation is employed. The differences are exacerbated at low steam saturation pressures (∼4 kPa), where the cycle efficiencies range from 36.0% and 37.7% between different pressure drop correlations. Results from this study indicate that both steam side and air-side effects must be considered to improve ACC performance. Some methods for enhancing in-tube condensation are mentioned, and future ACC research needs are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.