Abstract

Invasive species can increase the susceptibility of ecosystems to disease by acting as reservoir hosts for pathogens. Invasive hosts are often sparsely recorded and not in equilibrium, so predicting their spatial distributions and overlap with other hosts is problematic. We applied newly developed methods for modelling the distribution of invasive species to the invasive shrub Rhododendron ponticum—a foliar reservoir host for the Phytophthora oomycete plant pathogens, P. ramorum and P. kernoviae, that threaten woodland and heathland habitat in Scotland. We compiled eleven datasets of biological records for R. ponticum (1,691 points, 8,455 polygons) and developed Maximum Entropy (MaxEnt) models incorporating landscape, soil and climate predictors. Our models produced accurate predictions of current suitable R. ponticum habitat (training AUC = 0.838; test AUC = 0.838) that corresponded well with population performance (areal cover). Continuous broad-leaved woodland cover, low elevation (<400 m a.s.l.) and intermediate levels of soil moisture (or Enhanced Vegetation Index) favoured presence of R. ponticum. The high coincidence of suitable habitat with both core native woodlands (54 % of woodlands) and plantations of another sporulation host, Larix kaempferi (64 % of plantations) suggests a high potential for spread of Phytophthora infection to woodland mediated by R. ponticum. Incorporating non-equilibrium modelling methods did not improve habitat suitability predictions of this invasive host, possibly because, as a long-standing invader, R. ponticum has filled more of its available habitat at this national scale than previously suspected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.