Abstract
AbstractIn India, rainfall-induced landslides cause a high toll in terms of fatalities and damages. Therefore, the adoption of tools to predict the occurrence of such phenomena is urgent. For the purpose, the LANDSLIP project aimed at developing a landslide early warning system (LEWS) to forecast the occurrence of rainfall-induced landslides in two Indian pilot areas: Darjeeling and Nilgiris. Rainfall thresholds are a widely used tool to define critical probability levels for the possible occurrence of landslides in large areas, and are particularly suitable to be implemented in LEWSs.In this work, we exploited two catalogues of 84 and 116 rainfall conditions likely responsible for landslide triggering in Darjeeling and Nilgiris, respectively. Adopting a frequentist statistical method and using an automatic tool, we determined rainfall thresholds at different non-exceedance probabilities for the two pilot areas. Despite the daily temporal resolution of rainfall data and the spatial and temporal distribution of the documented landslides, the thresholds calculated for the two areas have acceptable uncertainties and were implemented in the LANDSLIP LEWS prototype. We expect that the new thresholds and the whole system will contribute to mitigate the landslide risk in the study areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.