Abstract
Metabolite profiling can provide insights into the metabolic status of complex living systems through the non-targeted analysis of metabolites in any biological sample. Metabolite profiling is complementary to genomics, transcriptomics and proteomics, and its applications span epidemiology, disease diagnosis, nutrition, pharmaceutical research, and toxicology. Metabolic phenotypes are a reflection of an organism's environment, lifestyle, diet, gut microfloral composition and are also influenced by genetic factors, with important implications in genome-wide-association studies. Specialized analytical platforms, such as NMR spectroscopy and MS, are required to interrogate such metabolic complexity. The increased sophistication of such techniques has lead to a demand for improved data analysis approaches, including preprocessing and advanced chemometric techniques. This article discusses data generation, preprocessing, multivariate analysis and data interpretation for LC-MS-based metabolite profiling, focusing on challenges encountered and potential solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.