Abstract

ABSTRACTHeterostructure devices composed of silicon, silicon-germanium or germanium layers have substantially broadened the spectrum of the well established Si microelectronics. The achieved results for devices, such as the SiGe base heterobipolar transistor (SiGe HBT), the n-. and p-channel SiGe modulation doped field effect transistor (SiGe MODFET) and optoelectronic devices (SiGe LED and photodiode) point to the outstanding potential of this novel heterosystem. Today the SiGe HBT is the world fastest Si based transistor with a wide application area from conventional microelectronic applications to microwave power generation in a frequency regime where up to now only III-V semiconductor devices have prevailed. In addition novel SiGe optoelectronic devices, such as SiGe LED and Si/Ge photodetector in the near infrared spectral region (1.3µ) could pave the way for Si based optical interconnect devices monolithically integrated on a Si IC chip (chip to chip coupling). Growth aspects, strain effects, band alignment and novel bandstructure effects in this material system will be reviewed, its effect on the device performance will be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call