Abstract

Hybrid Energy Systems (HES) combine multiple energy sources to maximize energy efficiency. Due to the unpredictability and dependence on the weather, integrating renewable energy sources (RES) is a viable option for distributed distribution (DG). To minimize environmental impact and meet the increasing energy demand–supply gap, scientists need to find alternative energy sources. Several studies have confirmed that HES is economically viable in remote areas, particularly in off-grid applications. Despite several improvements over the past few years, existing HES control systems are complex, costly, less reliable, and not sufficiently efficient. The purpose of this paper is to present the most common challenges faced by stand-alone hybrid energy systems and how the artificial intelligence (AI) technique has improved them. AI techniques are widely used in HES, and this study addressed how AI can solve classification, forecasting, networking, optimization, and control problems. This study provides an overview of the recent history of HES critical challenges in energy management, sizing, demand side management, and storage management; additionally, we have addressed several conceptual/theoretical problems, antecedents, and consequences that may be of interest or require further research. Companies must ensure their systems perform effectively and pay for their investments. Regardless of the system, failures and defects should be diagnosed and repaired as soon as possible. This can be achieved by increasing the system’s efficiency and preventing early-stage damage. Researchers and project managers who work on hybrid systems will find this paper to be an invaluable resource.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.