Abstract
As the world enters into the era of electrifying transportation for cleaner energy, lithium-ion battery (LIB)-powered electric vehicles have drawn great attention in recent years. However, the fast-charging capability of LIBs has long been regarded as the technological obstacle to the wider adoption of battery electric vehicles (BEVs) in the market. A substantial challenge associated with fast charging is the formation of Li plating on the graphite anode as it is the major contributor of side reactions during cell operations. In this review, the fundamentals of Li plating and corresponding influencing factors (including state of charge [SOC], charging current density, temperature, and N/P ratio) for the Li-ion intercalation process are first elucidated under fast-charging conditions. Furthermore, conventional strategies to suppress Li plating by enhancing ion transport kinetics between interface and electrode through anode engineering and electrolyte design are also summarized and analyzed. Then, innovative strategies for achieving ultrahigh SOC of anodes by regulating Li plating morphology on host materials to construct hybrid anode storage are discussed in detail. Two types of strategies are compared in terms of cell performance, process simplicity, and safety concerns. Last, we highlight some research orientations and perspectives pertaining to the development of hybrid anode storage, providing effective approaches to address Li plating issues for fast-charging LIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.