Abstract

BackgroundTo realize potential public health benefits from genetic and genomic innovations, understanding how best to implement the innovations into clinical care is important. The objective of this study was to synthesize data on challenges identified by six diverse projects that are part of a National Human Genome Research Institute (NHGRI)-funded network focused on implementing genomics into practice and strategies to overcome these challenges.MethodsWe used a multiple-case study approach with each project considered as a case and qualitative methods to elicit and describe themes related to implementation challenges and strategies. We describe challenges and strategies in an implementation framework and typology to enable consistent definitions and cross-case comparisons. Strategies were linked to challenges based on expert review and shared themes.ResultsThree challenges were identified by all six projects, and strategies to address these challenges varied across the projects. One common challenge was to increase the relative priority of integrating genomics within the health system electronic health record (EHR). Four projects used data warehousing techniques to accomplish the integration. The second common challenge was to strengthen clinicians’ knowledge and beliefs about genomic medicine. To overcome this challenge, all projects developed educational materials and conducted meetings and outreach focused on genomic education for clinicians. The third challenge was engaging patients in the genomic medicine projects. Strategies to overcome this challenge included use of mass media to spread the word, actively involving patients in implementation (e.g., a patient advisory board), and preparing patients to be active participants in their healthcare decisions.ConclusionsThis is the first collaborative evaluation focusing on the description of genomic medicine innovations implemented in multiple real-world clinical settings. Findings suggest that strategies to facilitate integration of genomic data within existing EHRs and educate stakeholders about the value of genomic services are considered important for effective implementation. Future work could build on these findings to evaluate which strategies are optimal under what conditions. This information will be useful for guiding translation of discoveries to clinical care, which, in turn, can provide data to inform continual improvement of genomic innovations and their applications.

Highlights

  • To realize potential public health benefits from genetic and genomic innovations, understanding how best to implement the innovations into clinical care is important

  • Findings suggest that strategies to facilitate integration of genomic data within existing electronic health record (EHR) and educate stakeholders about the value of genomic services are considered important for effective implementation

  • Three challenges were identified by all six projects: 1) prioritizing integration of genomics into the EHR, 2) improving clinicians’ knowledge and beliefs about genomic medicine, and 3) engaging patients to participate in the genomic medicine projects

Read more

Summary

Introduction

To realize potential public health benefits from genetic and genomic innovations, understanding how best to implement the innovations into clinical care is important. Precision medicine, which addresses individual variability in effectiveness of disease prevention and treatment strategies, is a rapidly growing field, with application on a broad scale spurred by innovations resulting from the accumulation of massive amounts of health and biologic data. The Precision Medicine Initiative, launched by President Obama in 2015, reflects a public health commitment to developing technologies and infrastructure for harnessing and sharing data from a national initial cohort of one million volunteers to develop precision medicine applications [1, 2]. There is a need for systems capable of integrating genetic evidence-based applications into routine health care [3]. Despite sufficient evidence of certain gene/drug interactions such as between CYP2C19 and clopidogrel and CYP2C9/VKORC1 and warfarin, routine genotyping is not performed either preemptively or at the time of prescribing [5, 6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.