Abstract
AbstractGlobal reliance on fossil fuel combustion for energy production has contributed to the rising concentration of atmospheric CO2, creating significant global climate challenges. In this regard, direct air capture (DAC) of CO2 from the atmosphere has emerged as one of the most promising strategies to counteract the harmful effects on the environment, and the further development and commercialization of this technology will play a pivotal role in achieving the goal of net‐zero emissions by 2050. Among various DAC adsorbents, metal–organic frameworks (MOFs) show great potential due to their high porosity and ability to reversibly adsorb CO2 at low concentrations. However, the adsorption efficiency and cost‐effectiveness of these materials must be improved to be widely deployed as DAC sorbents. To that end, this perspective provides a critical discussion on several types of benchmark MOFs that have demonstrated high CO2 capture capacities, including an assessment of their stability, CO2 capture mechanism, capture‐release cycling behavior, and scale‐up synthesis. It then concludes by highlighting limitations that must be addressed for these MOFs to go from the research laboratory to implementation in DAC devices on a global scale so they can effectively mitigate climate change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.