Abstract

Single-atom electrocatalysts (SACs) are a class of promising materials for driving electrochemical energy conversion reactions due to their intrinsic advantages, including maximum metal utilization, well-defined active structures, and strong interface effects. However, SACs have not reached full commercialization for broad industrial applications. This review summarizes recent research achievements in the design of SACs for crucial electrocatalytic reactions on their active sites, coordination, and substrates, as well as the synthesis methods. The key challenges facing SACs in activity, selectivity, stability, and scalability, are highlighted. Furthermore, it is pointed out the new strategies to address these challenges including increasing intrinsic activity of metal sites, enhancing the utilization of metal sites, improving the stability, optimizing the local environment, developing new fabrication techniques, leveraging insights from theoretical studies, and expanding potential applications. Finally, the views are offered on the future direction of single-atom electrocatalysis toward commercialization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.