Abstract

All-inorganic perovskites CsPbX3 (X: halogen ions) have gained significant attention for application in next generation photovoltaic technologies due to their superior thermal stability and excellent optoelectronic properties. Compared with fabrication in N2 glove boxes, ambient air processing could simplify the operation and reduce the fabrication cost, which is favorable for boosting the commercialization of perovskite solar cells (PSCs). However, the moisture in ambient air tends to cause the phase transformation of inorganic perovskite from the photoactive black phase to the photo-inactive yellow one, thus deteriorating the photovoltaic performance. Considering the obstacles from both the intrinsic structure instability and the external atmosphere, tremendous efforts have been made for pursuing high-efficiency and stable all-inorganic PSCs that can be processed in ambient air. In this review, we first analyze the challenges for fabricating CsPbX3 in ambient air from both the intrinsic characters and external atmosphere and then overview the progress of the air-fabricated CsPbX3 films for photovoltaic applications. The recently reported various modification strategies, including the compositional/precursor, solvent, additive, and interface engineering, for achieving high-quality and stable CsPbX3 films are comprehensively summarized. Finally, a brief conclusion and outlook is given to inspire more research interest on air-fabricated CsPbX3 photovoltaics. This review provides significant guidance for further optimizing the air-processible CsPbX3 films to boost the large-scale commercialization of cost-effective PSCs in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.