Abstract

The development of chiral HPLC methods and isolation techniques within Zeneca Agrochemicals (formerly ICI Agrochemicals) is reviewed. The use of low temperature to improve chiral separations has been successfully applied to production analysis, but although useful for some compounds it is regrettably not a universal panacea for all poor separations. The need to isolate small quantities of individual enantiomers from new compounds for research evaluation has led us to devise a more universal and cheap chiral stationary phase (CSP) for Preparative-LC. Joint academic research produced a CSP based on tartaric acid which was made commercially available and it was gratifying to find it was the only phase able to resolve a novel insecticide. However, as new CSPs emerged almost every month, our attention turned to using a universal chiral detector for analysis, rather than via separation of individual enantiomers. Diode laser-based polarimeters offered the opportunity of cheap, sensitive chiroptical detectors for HPLC and the ability to move away from chiral columns in both research and production analysis. Jointly sponsored research with a university has successfully explored the versatility of chiroptical detectors in agrochemical and food analysis. Comparison of chiral SFC with chiral HPLC and an extensive evaluation of established and research agrochemicals on a wide range of commercial CSPs have led to a revised method development strategy. Current work with high load displacement chiral chromatography will be described as a potential means of isolating pure enantiomers from racemates. © 1994 Wiley-Liss, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call