Abstract

Lithium-ion batteries (LIBs) play a vital role in portable electronic products, transportation and large-scale energy storage. However, the electrochemical performance of LIBs deteriorates severely at low temperatures, exhibiting significant energy and power loss, charging difficulty, lifetime degradation, and safety issue, which has become one of the biggest challenges for LIBs. This article aims to review challenges and limitations of the battery chemistry in low-temperature environments, as well as the development of low-temperature LIBs from cell level to system level. This review introduces feasible solutions to accelarate low-temperature kinetics by increasing the inherent reactivity from cell design and improving the external reaction temperature from heating techniques. In addition, real-time and accurate monitoring of the battery temperature for the battery thermal management, as well as the optimization of charging protocols and the online lithium-plating monitoring in battery management systems are outlined. In general, a systematic review of low-temperature LIBs is conducted in order to provide references for future research. • Challenges and limitations of lithium-ion batteries at low temperatures are introduced. • Feasible solutions for low-temperature kinetics have been introduced. • Battery management of low-temperature lithium-ion batteries is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call