Abstract

We present two methods to remove wafer probe interference radiation from measured on-chip antenna patterns performed in a probe station environment. On-chip antenna pattern and gain measurements are affected by parasitic probe tip radiation as well as scattered energy from the metal probe station environment. In this work, we use superposition and S-parameter techniques to de-embed the effects of probe tip radiation. On-chip Dipole, Yagi, and Rhombic antennas were fabricated using standard 180nm CMOS, and radiation patterns were measured at 60 GHz. This work shows methods that improve the ability to reliably design, predict, and measure on-chip antenna patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.