Abstract

AbstractLithium‐ion batteries (LIBs) have gained widespread attention due to their numerous advantages, including high energy density, prolonged cycle life, and environmental friendliness. Nevertheless, their electrochemical performance deteriorates rapidly under extreme temperature conditions, accompanied by a series of safety issues. Electrolyte optimization has emerged as a crucial and feasible strategy to expand the operational temperature range of LIBs. This review comprehensively summarizes the challenges, advances, and characterization methodologies of electrolytes at both subzero and elevated temperatures. Initially, it discusses the degradation mechanisms of different types of electrolytes at extreme temperatures, integrates recent advances, and offers insights into future research directions. Subsequently, various experimental techniques are systematically presented to evaluate the fundamental physical properties, stability, and dynamic behaviors of electrolytes in non‐ambient environments. Finally, it also provides relevant computational methods across the electronic, molecular, and macroscopic scales, and explores the application of high‐throughput techniques in this field. This review offers valuable guidance for breaking the working temperature limits of electrolytes and promoting the development of next‐generation LIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.