Abstract

Abstract Why the Challenger Deep, the deepest point on Earth’s solid surface, is so deep is unclear, but part of the reason must be the age and density of the downgoing plate. Northwest Pacific oceanic crust subducting in the Izu-Bonin-Mariana Trench is Cretaceous and Jurassic, but the age and nature of Pacific oceanic crust subducting in the southernmost Mariana Trench remains unknown. Here we present the first study of seafloor basalts recovered by the full-ocean-depth crewed submersible Fendouzhe from the deepest seafloor around the Challenger Deep, from both the overriding and downgoing plates. 40Ar/39Ar ages indicate that downgoing basalts are Early Cretaceous (ca. 125 Ma), indicating they are part of the Pacific plate rather than the nearby Oligocene Caroline microplate. Downgoing-plate basalts are slightly enriched in incompatible elements but have similar trace element and Hf isotope compositions to other northwest Pacific mid-ocean ridge basalts (MORBs). They also have slightly enriched Sr-Nd-Pb isotope compositions like those of the Indian mantle domain. These features may have formed with contributions from plume-derived components via plume-ridge interactions. One sample from the overriding plate gives an 40Ar/39Ar age of ca. 55 Ma, about the same age as subduction initiation, to form the Izu-Bonin-Mariana convergent margin. Our results suggest that 50%–90% of the Pb budget of Mariana arc magmas is derived from the subducted MORBs with Indian-type isotope affinity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call