Abstract

This work developed a novel chalcopyrite (CuFeS2) incorporated catalytic ceramic membrane (CFSCM), and comprehensively evaluated the oxidation-filtration efficiency and mechanism of CFSCM/peroxymonosulfate (PMS) for organics removal and membrane fouling mitigation. Results showed that PMS activation was more efficient in the confined membrane pore structure. The CFSCM50/PMS filtration achieved almost complete removal of 4-Hydroxybenzoic acid (4-HBA) under the following conditions: pH = 6.0, CPMS = 0.5 mM, and C4-HBA = 10 mg/L. Meanwhile, the membrane showed good stability after multiple uses. During the reaction, SO4•− and •OH were generated in the CFSCM50/PMS system, and SO4•− was considered to be the dominant reactive species for pollutant removal. The roles of copper, iron, and sulfur species, as well as the possible catalytic mechanism were also clarified. Besides, the CFSCM50/PMS catalytic filtration exhibited excellent antifouling properties against NOM with reduced reversible and irreversible fouling resistances. The Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory analysis showed an increased in repulsive energy at the membrane-foulant interface in the CFSCM50/PMS system. Membrane fouling model analysis indicated that standard blocking was the dominant fouling pattern for CFSCM50/PMS filtration. Overall, this work demonstrates an efficient catalytic filtration process for foulants removal and outlines the synergy of catalytic oxidation and interface interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call