Abstract
Chalcones and their pyrazine analogs synthesized by Claisen–Schmidt condensation were tested for inhibition of aldose reductase, which is the key enzyme in the development of secondary diabetic complications. The most active compounds exerted IC50 values within the micromolar scale, and their interactions with the enzyme were described in a molecular docking study. Antioxidant activity of several representative compounds was explored in DPPH (2,2-diphenyl-1-picrylhydrazyl) assay, revealing significant scavenging for 4-hydroxy-substituted derivatives endowed with electron-donating methoxy substituent in position 3 of the ring B. To conclude, the novel chalcones hydroxylated and methoxylated in the B-ring and their pyrazine analogs exhibited significant aldose reductase inhibition activity, albeit lower in comparison with the reference epalrestat. Medium antioxidant activity (not exceeding the antioxidant efficacy of the standard Trolox) was shown by the representative compounds tested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.