Abstract
Due to remarkable properties of the chalcogenide glasses, especially sulphide glasses, amorphous chalcogenide films should play a motivating role in the development of integrated planar optical circuits and their components. This paper describes the fabrication and properties of optical waveguides of pure and rare earth doped sulphide glass films prepared by two complementary techniques: RF magnetron sputtering and pulsed laser deposition (PLD). The deposition parameters were adjusted to obtain, from sulphide glass targets with a careful control of their purity, layers with appropriate compositional, morphological, structural characteristics and optical properties. These films have been characterized by micro-Raman spectroscopy, atomic force microscopy (AFM), X-ray diffraction technique (XRD) and scanning electron microscopy (SEM) coupled with energy dispersive X-ray measurements (EDX). Their optical properties were measured thanks to m-lines prism coupling and near field methods. Rib waveguides were produced by dry etching under CF<sub>4</sub>, CHF<sub>3</sub> and SF<sub>6</sub> atmosphere. The photo-luminescence of rare earth doped GeGaSbS films were clearly observed in the n-IR spectral domain and the study of their decay lifetime will be presented. First tests were carried out to functionalise the films with the aim of using them as sensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.