Abstract

This paper first reviews recent progress in the understanding of the nanometer-scale mechanism of reversible photostructural changes in chalcogenide glasses, and its relevance to various photo-induced phenomena. Then the principles of phase-change optical recording are described. Finally, a novel technique for overcoming the diffraction limit in optical recording is considered, namely the super-resolution near-field structure. This technique, used in combination with multicomponent Te-based chalcogenides as a recording medium, is believed to be a prototype for future optical-storage devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call