Abstract

AbstractWe have demonstrated a variety of solution-phase approaches for the synthesis of 1- dimensional nanostructures from chalcogens such as Se and Te. These nanostructures include uniform, single crystalline nanowires and nanorods (lateral dimensions from 10 to 1000 nm, and lengths ranging from 2 to >100 νm). These nanostructures grew via a solid-solution-solid transformation mechanism, in which Se and Te atoms were transported from the less stable source (amorphous colloids) into the more stable product (trigonal phase nanocrystallites). The nanocrystallites (or seeds) were formed either through temperature driven homogeneous nucleation or by sonochemical cavitation. As directed by the highly anisotropic crystal structure, the growth could be confined to one particular direction. These nanowires could be prepared both as dispersions in various solvents or as networked arrays on solid supports.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.