Abstract
AbstractVarious definitions of the entropy for countable-state topological Markov chains are considered. Concrete examples show that these quantities do not coincide in general and can behave badly under nice maps. Certain restricted random walks which arise in a problem in magnetic recording provide interesting examples of chains. Factors of some of these chains have entropy equal to the growth rate of the number of periodic orbits, even though they contain no subshifts of finite type with positive entropy; others are almost sofic – they contain subshifts of finite type with entropy arbitrarily close to their own. Attempting to find the entropies of such subshifts of finite type motivates the method of entropy computation by loop analysis, in which it is not necessary to write down any matrices or evaluate any determinants. A method for variable-length encoding into these systems is proposed, and some of the smaller subshifts of finite type inside these systems are displayed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.