Abstract
The generic chaining method provides a sharp description of the suprema of many random processes in terms of the geometry of their index sets. The chaining functionals that arise in this theory are however notoriously difficult to control in any given situation. In the first paper in this series, we introduced a particularly simple method for producing the requisite multi scale geometry by means of real interpolation. This method is easy to use, but does not always yield sharp bounds on chaining functionals. In the present paper, we show that a refinement of the interpolation method provides a canonical mechanism for controlling chaining functionals. The key innovation is a simple but powerful contraction principle that makes it possible to efficiently exploit interpolation. We illustrate the utility of this approach by developing new dimension-free bounds on the norms of random matrices and on chaining functionals in Banach lattices. As another application, we give a remarkably short interpolation proof of the majorizing measure theorem that entirely avoids the greedy construction that lies at the heart of earlier proofs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.