Abstract
A three-dimensional computational finite element procedure for the vibration and dynamic stress analysis of the track link chains of off-road vehicles is presented in this paper. The numerical procedure developed in this investigation integrates classical constrained multibody dynamics methods with finite element capabilities. The nonlinear equations of motion of the three-dimensional tracked vehicle model in which the track link s are considered flexible bodies, are obtained using the floating frame of reference formulation. Three-dimensional contact force models are used to describe the interaction of the track chain links with the vehicle components and the ground. The dynamic equations of motion are first presented in terms of a coupled set of reference and elastic coordinates of the track links. Assuming that the structural flexibility of the track links does not have a significant effect on their overall rigid body motion as well as the vehicle dynamics, a partially linearized set of differential equations of motion of the track links is obtained. The equations associated with the rigid body motion are used to predict the generalized contact, inertia, and constraint forces associated with the deformation degrees of freedom of the track links. These forces are introduced to the track link flexibility equations which are used to calculate the deformations of the links resulting from the vehicle motion. A detailed three-dimensional finite element model of the track link is developed and utilized to predict the natural frequencies and mode shapes. The terms that represent the rigid body inertia, centrifugal and Coriolis forces in the equations of motion associated with the elastic coordinates of the track link are described in detail. A computational procedure for determining the generalized constraint forces associated with the elastic coordinates of the deformable chain links is presented. The finite element model is then used to determine the deformations of the track links resulting from the contact, inertia, and constraint forces. The results of the dynamic stress analysis of the track links are presented and the differences between these results and the results obtained by using the static stress analysis are demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.