Abstract

Stereospecific polymerization of propylene was carried out with rac-ethylenebis(indenyl)zirconium dichloride (rac-Et(Ind)2ZrCl2) (1), rac-dimethylsilylenebis(indenyl)zirconium dichloride (rac-Me2Si(Ind)2ZrCl2) (2) and isopropylidene(cyclopentadienyl)(9-fluorenyl)zirconium dichloride (i-Pr(Cp)(Flu)ZrCl2) (3) combined with trialkyl-aluminum (AIR3: R = C2H5, i-C4H9)/triphenylcarbenium tetrakis(pentafluorophenyl)borate (Ph3CB(C6F5)4) (4). In isospecific polymerization with 1 and 2, the molecular weight of polypropylenes decreased with increase in the molar ratio of AlEt3 (Et = C2H5)/Zr, whereas, an effect of AliBu3 (iBu = i-C4H9) concentration on molecular weight was not observed. The microstructures of resulting polypropylenes were studied by 13C n.m.r. and an increase in the molar ratio of ethyl end groups (derived from chain transfer to AlEt3) to n-propyl end groups (derived from β-hydrogen transfer) was observed with increase in the molar ratio of AlEt3Zr (1 and 2). The chain transfer reactions by both AlEt3 and AliBu3 were also detected in syndiospecific polymerization with 3. The molar ratio of alkyl (R) end groups (derived from chain transfer to AIR3) to n-propyl end groups was higher in the polypropylene obtained with AlEt3 than that obtained with AliBu3. The relative constants ktrAkp (ktrA = rate constant of chain transfer to AIR3, kp = rate constant of propagation) were determined by kinetic study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.