Abstract
The optoelectronic properties of conjugated polymers are dictated by their chain conformations, which depend on the interplay of delocalization of electrons along the π-conjugated backbone and the intrachain interactions of pendant side chains. Here, we leverage small-angle neutron scattering to measure the chain shapes of several classes of commonly used, high mobility donor–acceptor conjugated polymers in dilute solution. We find that these model conjugated polymers are semiflexible with persistence lengths ranging from several to hundreds of nanometers, dependent on the molecular structure of the polymer, indicating the importance of repeat unit geometry, particularly side-chain size and branching, on the overall chain conformations. The measured persistence lengths show good agreement with those calculated according to dihedral distributions predicted from density functional theory. Larger persistence lengths are shown to correlate with increased charge-carrier mobility, signifying the importance of rational molecular design to obtain high persistence length organic semiconductors and thus advantageous optoelectronic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.