Abstract

In the context of neuromorphic computation, spintronic memristors are investigated for their use as synaptic weights. In this paper, we propose and experimentally demonstrate a resistive synaptic device based on ten magnetic tunnel junctions (MTJs) connected in a serial configuration. Our device exhibits multiple resistance levels that support its use as a synaptic element. It allows for two operating knobs: external magnetic field and voltage pulses (Spin-Transfer Torque). Moreover, it can be operated in different ways. When varying continuously the amplitude of the voltage pulse and/or the magnetic field, eleven resistance states can be reached. In contrast, if the initial state of the chain is reset between every step, a very large number of levels are reached. Ideally, a total of 2N resistance levels could be accessible. This coincides well with the desired analog-like behavior in ideal memristors. Since this device consists of a scalable number of N MTJs, and MTJ technology is continuously optimized and improved, the proposed memristor shows promise as a scalable synapse solution for neuromorphic hardware implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.